Step of Proof: iff_imp_equal_bool
9,38
postcript
pdf
Inference at
*
I
of proof for Lemma
iff
imp
equal
bool
:
a
,
b
:
. ((
a
)
(
b
))
(
a
=
b
)
latex
by ((UnivCD)
CollapseTHENA ((Auto_aux (first_nat 1:n) ((first_nat 1:n),(first_nat 3:n
C
)) (first_tok :t) inil_term)))
latex
C
1
:
C1:
1.
a
:
C1:
2.
b
:
C1:
3. (
a
)
(
b
)
C1:
a
=
b
C
.
Definitions
t
T
,
P
Q
,
x
:
A
.
B
(
x
)
,
Lemmas
bool
wf
,
assert
wf
,
iff
wf
origin